Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If pqr ≠ 0 and the system of equations (p+a) x+b y+c z=0 a x+(q+b) y+c z=0 a x+by+(r+c) z=0 has a non-trivial solution, then value of (a/p)+(b/q)+(c/r) is
Q. If
pq
r
=
0
and the system of equations
(
p
+
a
)
x
+
b
y
+
cz
=
0
a
x
+
(
q
+
b
)
y
+
cz
=
0
a
x
+
b
y
+
(
r
+
c
)
z
=
0
has a non-trivial solution, then value of
p
a
+
q
b
+
r
c
is
2996
209
Determinants
Report Error
A
-1
B
0
C
1
D
2
Solution:
Δ
=
∣
∣
p
+
a
a
a
b
q
+
b
b
c
c
r
+
c
∣
∣
=
0
Applying
R
1
→
R
2
−
R
1
and
R
3
→
R
3
−
R
1
,
we get
∣
∣
p
+
a
−
p
−
p
b
q
0
c
0
r
∣
∣
=
0
⇒
pq
c
+
[
q
(
p
+
a
)
+
b
p
]
r
=
0
Divide by
pq
r
to obtain
p
a
+
q
b
+
r
c
=
−
1