Given ellipse, 16x2+12y2=1
Let eccentricity of ellipse be ' e′
Then b2=a2(1−e2)
Here, b2=12,a2=16 ∴12=16(1−e2) 1−e2=43
or e2=1−43=41
or e=21
If α,β are the eccentric angles of the ends of a focal chord of the ellipse, then eccentricity is given by e=cos(2α+β)cos(2α−β)
Here, α=3π,β=θ, and e=21 21=cos(2π/3+θ)cos(2π/3−θ)
Multiplying in Nr and Dr by 2sin(2π/3+θ) 21=2sin(2π/3+θ)cos(2π/3+θ)2sin(2π/3+θ)cos(2π/3−θ) =sin(π/3+θ)sin(2π/3+θ+π/3−θ)+sin(2π/3+θ−π/3+θ) {∵2sinAcosB=sin(2A+B)+sin(2A−B)
and 2sinAcosA=sin2A} 21=sin3πcosθ+cos3πsinθsin3π+sinθ sin3πcosθ+cos3πsinθ=2(sin3π+sinθ) 23cosθ+21sinθ=2(23+sinθ) 23cosθ+21sinθ=3+2sinθ
or 23cosθ=23sinθ+3 cosθ=3sinθ+2 or 21cosθ−23sinθ=1
or cos3πcosθ−sin3πsinθ=1
or cos(3π+θ)=1 or cos(3π+θ)=cos0∘
On comparing both sides, we get 3π+θ=0∘ or θ=−3π∴tanθ=tan(3−π) tanθ=−3