Since p(x) has realtive extreme at x=1&2
So p′(x)=0 at x=1&2 ⇒p′(x)=A(x−1)(x−2) ⇒p(x)=∫A(x2−3x+2)dx p(x)=A(3x3−23x2+2x)+C…(1) P(1)=8
From (1) 8=A(31−23+2)+C ⇒8=65A+C ⇒48=5A+6C…(3) P(2)=4 ⇒4=A(38−6+4)+C ⇒4=32A+C ⇒12=2A+3C…(4)
From 3&4,C=−12
So P(0)=C=−12