Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p, q, r are 3 real numbers satisfying the matrix equation , [ p q r ] [3&4&1 3&2&3 2&0&2] = [3&0&1] then 2p + q - r equals :
Q. If p, q, r are 3 real numbers satisfying the matrix equation ,
[
p
q
r
]
⎣
⎡
3
3
2
4
2
0
1
3
2
⎦
⎤
=
[
3
0
1
]
then 2p + q - r equals :
5247
177
Matrices
Report Error
A
-3
33%
B
-1
18%
C
4
32%
D
2
18%
Solution:
Given
[
p
q
r
]
⎣
⎡
3
3
2
4
2
0
1
3
2
⎦
⎤
=
[
3
0
1
]
⇒
[
3
p
+
3
q
+
2
r
4
p
+
2
q
p
+
3
q
+
2
r
]
=
[
3
0
1
]
⇒
3
p
+
3
q
+
2
r
=
3
...(i)
4
p
+
2
q
=
0
⇒
q
=
−
2
p
...(ii)
p
+
3
q
+
2
r
=
1
...(iii)
On solving (i), (ii) and (iii), we get
p = 1, q = - 2, r = 3
∴
2p + q - r = 2(1) + (- 2) - (3) = - 3.