As the given system of equations has a nontrivial solution Δ=∣∣pbcaqcabr∣∣=0
Applying C3→C3−C2 and C2→C2−C1, we get Δ=∣∣pbca−pq−b0a−p0r−c<br/>∣∣=0
Expanding along C3, we get (a−p)∣∣bcq−b0∣∣+(r−c)∣∣pba−pq−b∣∣=0 ⇒(a−p)(−c)(q−b)+(r−c){p(q−b)−b(a−p)}=0 ⇒(p−a)(q−b)c+p(r−c)(q−b)+b(r−c)(p−a)=0
Dividing by (p−a)(q−b)(r−c) we get r−cc+p−ap+q−bb=0 ⇒p−ap+q−bq+r−cr=q−bq−b+r−cr−c=2