Q.
If P and Q be two given points on the curve y=x+x1 such that OP.i^=1 and OQ.i^=−1 where i^ is a unit vector along the x-axis, then the length of vector 2OP+3OQ is
Let P(x1,y1), O(x2,y2) be two points on the curve y=x+x1
Let j be a unit vector along y-axis.
Then OP=x1i^+y1j^,OQ=x2i^+y2j^
Since OP.i^=−1 and OQ.j^=−1 ∴x1=1 and x2=−1 ⇒y1=2 and y2=−2 ∴OP=i^+2j^ ; OQ=−i^−2j^ ∴2OP+3OQ=2i^+4j^−3i^−6j^ =−i^−2j^
Hence ∣∣2OP+3OQ∣∣ =1+4=5