For figure (a), xcosθ−ysinθ=kcos2θ....(i)
For figure (b) xsecθ+ycosecθ=k....(ii) ∴ Perpendicular distance from (0,0) to the Eq. (i) is p=∣∣cos2θ+sin2θ0−0−kcos2θ∣∣=kcos2θ....(iii) (∵d=∣a2+b2ax1+by1+c)
Again, Eq. (ii) can be written as cosθx+sinθy=k ⇒xsinθ+ycosθ=kcosθsinθ ⇒xsinθ+ycosθ=2k(2cosθsinθ) ⇒xsinθ+ycosθ=2ksin2θ ⇒xsinθ+ycosθ−2ksin2θ=0....(iv)
Now, perpendicular distance from (0,0) to Eq. (iv) is q=∣∣sin2θ+cos2θ0+0−2ksin2θ∣∣ (∵a=sinθ,b=cosθ,c=−2ksin2θ,x1=0,y1=0) ⇒q=2ksin2θ(∵sin2θ+cos2θ=1) ⇒2q=ksin2θ....(v)
On squaring and adding Eqs. (iii) and (v), we get p2+4q2=k2cos22θ+k2sin22θ =k2(cos22θ+sin22θ) ∴p2+4q2=k2(∵sin2θ+cos2θ=1)