Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ω is a complex cube root of unity and f(n)=2(1+ω)(1+ω2)+3(2+ω)(2+ω2)+ ldots(n+1)(n+ω)(n+ω2), then the value of f(19) is
Q. If
ω
is a complex cube root of unity and
f
(
n
)
=
2
(
1
+
ω
)
(
1
+
ω
2
)
+
3
(
2
+
ω
)
(
2
+
ω
2
)
+
…
(
n
+
1
)
(
n
+
ω
)
(
n
+
ω
2
)
, then the value of
f
(
19
)
is
181
161
NTA Abhyas
NTA Abhyas 2022
Report Error
A
36150
B
36100
C
36101
D
36119
Solution:
We have,
f
(
n
)
=
2
(
1
+
ω
)
(
1
+
ω
2
)
+
3
(
2
+
ω
)
(
2
+
ω
2
)
+
…
(
n
+
1
)
(
n
+
ω
)
(
n
+
ω
2
)
⇒
f
(
n
)
=
∑
(
n
+
1
)
(
n
+
ω
)
(
n
+
ω
2
)
⇒
f
(
n
)
=
∑
(
n
+
1
)
(
n
2
+
n
ω
2
+
nω
+
ω
3
)
⇒
f
(
n
)
=
∑
(
n
+
1
)
(
n
2
+
n
(
ω
2
+
ω
)
+
1
)
⇒
f
(
n
)
=
∑
(
n
+
1
)
(
n
2
−
n
+
1
)
⇒
f
(
n
)
=
∑
(
n
3
+
1
)
⇒
f
(
n
)
=
[
2
n
(
n
+
1
)
]
2
+
n
∴
f
(
19
)
=
[
190
]
2
+
19
=
36119