Q.
If ω=cosnπ+isinnπ, then value of 1+ω+ω2+…+ωn−1 is
296
123
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have 1+ω+ω2+…+ωn−1=1−ω1−ωn=1−ω2
as ωn=cos(nnπ)+isin(nnπ)=cosπ+isinπ=−1
Now, 1−ω2=(1−ω)(1−ωˉ)2(1−ωˉ)=1−(ω+ωˉ)+ωωˉ2(1−ωˉ) =2−2Re(ω)2(1−ωˉ)[∵ωωˉ=∣ω∣2=1] =1−Re(ω)1−Re(ω)+iIm(ω)=1+i1−Re(ω)Im(ω) =1+i1−cos(nπ)sin(nπ)=1+i−2sin2(2nπ)2sin(2nπ)cos(2nπ) =1+icot(π/2n)