Coordinate of vertices of triangle A(2,3),B(2,4),C(4,3) ∴AB=1,BC=5,CA=2
So, ΔABC ' is right angle triangle where right angle at A that is orthocentre also. Coordinate of orthocentre is O(2,3).
Coordinates of centroid =(3x1+x2+x3,3y1+y2+y3) G=(38,310) G divide the line joining O and S in the ratio 2:1 38=32x+2 ⇒x=3 310=32y+3 ⇒y=27
So, AO2+9BG2+4CS2 AO2=(2−2)2+(3−3)2=0 ⇒AO2=0 BG2=(2−38)2+(4−310)2=98 ⇒9BG2=8 CS2=(4−3)2+(3−27)2=45 ⇒4CS2=5 ∴AO2+9BG2+4CS2=13