Q.
If normal at any point P on the ellipse a2x2+b2y2=1(a>b>0) meet the major and minor axes at Q and R respectively so that 3PQ=2PR, then the eccentricity of ellipse is equal to
P(acosθ,bsinθ)
Equation of normal ax secθ− by cosecθ=a2e2 ∴Q(secθae2,0)&R(0,bcosecθa2e2)
Now PQ:QR=2:1
Using section formula ae2cosθ=32(0)+1(acosθ)
Hence e2=31⇒e=31