Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If n is a positive integer greater than 1, then 3( n C0)-8( n C1)+13( n C2)-18( n C3)+ ldots upto (n+1) terms =
Q. If
n
is a positive integer greater than 1, then
3
(
n
C
0
)
−
8
(
n
C
1
)
+
13
(
n
C
2
)
−
18
(
n
C
3
)
+
…
upto
(
n
+
1
)
terms
=
2058
227
TS EAMCET 2018
Report Error
A
-5
B
n
2
n
+
1
−
1
C
2
2
n
−
1
D
0
Solution:
The general term of the given series is
T
r
=
(
−
1
)
r
(
3
+
5
r
)
n
C
r
′
r
=
0
,
1
,
2
,
…
,
n
∴
S
n
=
r
=
0
∑
n
(
−
1
)
r
(
3
+
5
r
)
n
C
r
=
3
r
=
0
∑
n
(
−
1
)
r
⋅
n
C
r
+
5
r
=
0
∑
n
(
−
1
)
r
r
n
C
r
=
3
[
r
=
0
∑
n
(
−
1
)
r
⋅
n
C
r
]
+
5
[
r
=
1
∑
n
(
−
1
)
r
⋅
r
r
n
⋅
n
−
1
C
r
−
1
]
=
3
[
r
=
0
∑
n
(
−
1
)
r
n
C
r
]
+
5
n
[
r
=
1
∑
n
(
−
1
)
r
⋅
n
−
1
C
r
−
1
]
=
3
(
0
)
+
5
n
(
0
)
=
0
+
0
=
0