Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If n be the number of distinct solutions of the equation cos- 1|x|+cos- 1|2 x|=π , then the value of (1/n) is equal to
Q. If
n
be the number of distinct solutions of the equation
co
s
−
1
∣
x
∣
+
co
s
−
1
∣
2
x
∣
=
π
,
then the value of
n
1
is equal to
103
159
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
1
Solution:
x
≥
0
cos
−
1
x
+
cos
−
1
2
x
=
π
.
2
x
=
cos
(
π
−
cos
−
1
x
)
=
−
cos
(
cos
−
1
x
)
=
−
x
⇒
x
=
0
x
≤
0
cos
−
1
(
−
x
)
+
cos
−
1
(
−
2
x
)
=
π
π
−
cos
−
1
x
+
π
−
cos
−
1
(
2
x
)
=
π
cos
−
1
x
+
cos
−
1
(
2
x
)
=
π