1457
209
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, zn=(z+1)n ⇒(zz+1)n=1=cos0+isin0 ⇒zz+1=(cos2πr+isin2πr)1/n =cosn2πr+isinn2πr
where, r=0,1,2,…,n−1. ⇒1+z1=cosn2πr+isinn2πr ⇒1+z1=1−2sin2nrπ+i×2sinnπr×cosnπr ⇒z1=−2sin2nrπ+2i×sinnrπcosnrπ ⇒z=i(2sinnrπ)[cosnrπ+isinnrπ]1 =i(2sinnrπ)1[cosnrπ−isinnrπ] ⇒x+iy=−2icotnrπ−21 ⇒x=−21
Hence, all the points lie on the line x=−21