Let the means be x1,x2,...xm
so that 1,x1,x2,...xm,31
is an A.P. of (m+2) terms.
Now, 31=Tm+2=a+(m+1)d=1+(m+1)d ∴d=m+130
Given :xm−1x7=95 ∴TmT8=a+(m−1)da+7d =95 ⇒9a+63d=5a+(5m−5)d ⇒4.1=(5m−68)m+130 ⇒2m+2=75m−1020 ⇒73m=1022 ∴m=731022=14