Q.
If M and m are the maximum and minimum values of xy for pair of real numbers (x,y) which satisfy the equation (x−3)2+(y−3)2=6 , then the value of M1+m1 is
Let xy=m′ . So, on putting y=m′x in the given circle,
We get (x−3)2+(m′x−3)2=6 ⇒x2(1+m′)−6x(1+m′)+12=0
Putting discriminant =0 , we get, m′=3±22
So, m=3−22 and M=3+22⇒mM=1 ⇒M1+m1=m+M =3−22+3+22 =6