Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ( log a/b-c)=( log b/c-a)=( log c/a-b), then the value of (aa bb cc) is (a ≠ b ≠ c, a, b, c>0)
Q. If
b
−
c
l
o
g
a
=
c
−
a
l
o
g
b
=
a
−
b
l
o
g
c
, then the value of
(
a
a
b
b
c
c
)
is
(
a
=
b
=
c
,
a
,
b
,
c
>
0
)
113
119
Continuity and Differentiability
Report Error
A
ab
c
B
ab
c
1
C
1
D
lo
g
(
ab
c
)
Solution:
lo
g
(
a
a
⋅
b
b
⋅
c
c
)
=
a
lo
g
a
+
b
lo
g
b
+
c
lo
g
c
=
a
(
b
−
c
)
k
+
b
(
c
−
a
)
k
+
c
(
a
−
b
)
k
=
0
⇒
(
a
a
b
b
c
c
)
=
1