Q.
If log245175=a,log1715875=b then find the value of a−b1−ab.
217
97
Continuity and Differentiability
Report Error
Answer: 5
Solution:
As, 175=52×7;245=5×72;875=53×7;1715=5×73
Now, log(5×72)(52×7)=a⇒1+2log572+log57=a ...(1)
Also, log(5×73)(53×7)=a⇒1+3log573+log57=b ....(2) ∴ from(1), we get 2+log57=a+2a⋅log57⇒(2−a)=(2a−1)log57⇒log57=(2a−12−a) ....(3)
Also, from (2), we get 3+log57=b+3blog57⇒(3−b)=(3b−1)log57⇒log57=(3b−13−b) ....(4) ∴ From (3) and (4), we get 2a−12−a=3b−13−b⇒(2−a)(3b−1)=(3−b)(2a−1) ⇒6b−2−3ab+a=6a−3−2ab+b⇒1=5a−5b+ab⇒((a−b)1−ab)=5