Q.
If ln(3sinx−4cosx+7+5y)=(sinx)y, then y′(π) is equal to
449
108
Continuity and Differentiability
Report Error
Solution:
We have ln(3sinx−4cosx+7+5y)=(sinx)y......(1)
Put x=π in equation (1), we get ln(11+5y)=0⇒11+5y=1⇒5y=−10 ∴y=−2. So, (π,−2) lies on the given curve.
Now on differentiating both the sides of equation (1) w.r.t. x, we get (3sinx−4cosx+7+5y)1×(3cosx+4sinx+5dxdy)=(sinx)dxdy+(cosx)y
As (π,−2) satisfy it, we get 1×(−3+0+5dxdy)=2 dxdy=55=1