Q.
If
\lim _{x \rightarrow \infty}\left\{\left(\sqrt{x^{4}+a x^{3}+3 x^{2}+b x+2}-\sqrt{x^{4}+2 x^{3}-c x^{2}+3 x-d}\right)\right\}
is finite, then the value of a is
We have, x→∞lim(x4+ax3+3x2+bx+2−x4+2x3−cx2+3x−d) =x→∞limx4+ax3+3x2+bx+2+x4+2x3−cx2+3x−d(x4+ax3+3x2+bx+2)−(x4+2x3−cx2+3x−d) =x→∞limx4+ax3+3x2+bx+2+x4+2x3−cx2+3x−d(a−2)x3+(3+c)x2+(b−3)x+(2+d)
Clearly, the degree of the polynomial in numerator is 3 and that of denominator is 2. Therefore, for the limit to be finite, we must have, a−2=0 ⇒a=2