Here, limx→0​{1+xlog(1+b2)}1/x
= limx→0​{xlog(1+b2)}.x1​
= elog(1+b2)=(1+b2)
Given, limx→0​{1+xlog(1+b2)}1/x=2bsin2θ ⇒(1+b2)=2bsin2θ ∴sin2θ=2b1+b2​
By AM ≥ GM, 2b+b1​​≥(b.b1​)1/2 ⇒2bb2+1​≥1
From Eqs. (ii) and (iii), sin2θ=1⇒=±2π​,asθ∈(−π,π]