x2−25x+24=0…(i) x2−x−24x+24=0 =x(x−1)−24(x−1)=0 =(x−1)(x−24)=0 ⇒x=1,24 ∵k is one of the root of the Eq. (i), ∴k=1,24
If k=1, ∴A=⎣⎡131221131⎦⎤ ∣A∣=1(2−3)−2(3−3)+1(3−2) =−1−0+1=0 ∣A∣=0 k=1, not possible, because given matrix A is singular.
Now, k=24, ∴A=⎣⎡1312211324⎦⎤ ∣A∣=1(48−3)−2(72−3)+1(3−2) =45−138+1=−92=0
adj A=⎣⎡45−474−6923011−4⎦⎤1=⎣⎡45−691−4723140−4⎦⎤ A−1=∣A∣1⋅adjA =−921⎣⎡45−691−4723140−4⎦⎤