We have,r=1∑mm+1Crsr=r=1∑mm+1Cr(1r+2r+…+nr) =k=1∑n{r=1∑mm+1Crkr} =k=1∑n[{r=0∑m+1m+1Crkr}−m+1C0−m+1Cm+1km+1] =k=1∑n{(1+k)m+1−1−km+1}=k=1∑n{(1+k)m+1−km+1}−k=1∑n1 =k=1∑n{(1+k)m+1−km+1}−n ={(2m+1−1m+1)+(3m+1−2m+1)+… +{(n+1)m+1−nm+1}}−n ={(n+1)m+1−1}−n=(n+1)m+1−(n+1)
Now put n=10 and m=11 then (n+1)m+1−(n+1)=1112−11