Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫(x9+x6+x3)(2 x6+3 x3+6)(1/3) d x=(1/A)(2 x9+3 x6+6 x3)B+C, where C is integration constant then AB is equal to
Q. If
∫
(
x
9
+
x
6
+
x
3
)
(
2
x
6
+
3
x
3
+
6
)
3
1
d
x
=
A
1
(
2
x
9
+
3
x
6
+
6
x
3
)
B
+
C
, where
C
is integration constant then
A
B
is equal to
907
127
Integrals
Report Error
A
32
60%
B
16
16%
C
8
14%
D
4
10%
Solution:
Θ
∫
(
x
9
+
x
6
+
x
3
)
(
2
x
6
+
3
x
3
+
6
)
3
1
d
x
=
∫
(
x
8
+
x
5
+
x
2
)
(
2
x
9
+
3
x
6
+
6
x
3
)
3
1
d
x
Let
2
x
9
+
3
x
6
+
6
x
3
=
t
⇒
18
(
x
8
+
x
5
+
x
2
)
d
x
=
d
t
∴
I
=
∫
18
t
1/3
d
t
=
18
1
⋅
4/3
t
4/3
+
C
=
24
1
t
4/3
+
C
∴
A
B
=
24
×
3
4
=
32