Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ((√x)5/(√x)7+x6) d x=α ℓ n((xβ/xβ+1))+C, then value of α and β are respectively are
Q. If
∫
(
x
)
7
+
x
6
(
x
)
5
d
x
=
α
ℓ
n
(
x
β
+
1
x
β
)
+
C
, then value of
α
and
β
are respectively are
179
165
Integrals
Report Error
A
2
5
and 2
B
5
2
and
2
5
C
2
5
and
5
2
D
2 and
2
5
Solution:
I
=
∫
(
x
)
2
+
(
x
)
7
1
d
x
=
∫
(
x
)
7
(
1
+
(
x
)
5
1
)
1
d
x
⇒
−
2
5
(
x
)
7
1
d
x
=
d
t
I
=
−
5
2
∫
1
+
t
1
d
t
=
−
5
2
ln
(
1
+
x
5/2
1
)
+
C
=
5
2
ln
(
x
5/2
+
1
x
5/2
)
+
C
so
α
=
5
2
and
β
=
2
5