Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ x5 e-4 x3 dx = (1/48) e-4x3 f(x) + C, where C is a constant of integration, then f(x) is equal to :
Q. If
∫
x
5
e
−
4
x
3
d
x
=
48
1
e
−
4
x
3
f
(
x
)
+
C
, where C is a constant of integration, then f(x) is equal to :
3194
250
JEE Main
JEE Main 2019
Integrals
Report Error
A
−
4
x
3
−
1
71%
B
4
x
3
+
1
14%
C
−
2
x
3
−
1
7%
D
−
2
x
3
+
1
7%
Solution:
∫
x
5
.
e
−
4
x
3
d
x
=
48
1
e
−
4
x
3
f
(
x
)
+
c
Put
x
3
=
t
3
x
2
d
x
=
d
t
∫
x
3
.
e
−
4
x
3
.
x
2
d
x
3
1
∫
t
.
e
−
4
t
d
t
3
1
[
t
.
−
4
e
−
4
t
−
∫
−
4
e
−
4
t
d
t
]
−
48
e
−
4
t
[
4
t
+
1
]
+
c
48
−
e
−
4
x
3
[
4
x
3
+
1
]
+
c
∴
f
(
x
)
=
−
1
−
4
x
3
(From the given options (1) is most suitable)