Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (x2-4/x4+9 x2+16) d x=A tan -1(f(x))+B, then the value of f(10) is.
Q. If
∫
x
4
+
9
x
2
+
16
x
2
−
4
d
x
=
A
tan
−
1
(
f
(
x
))
+
B
, then the value of
f
(
10
)
is_____.
539
140
Integrals
Report Error
Answer:
10.4
Solution:
I
=
∫
x
4
+
9
x
2
+
16
x
2
−
4
d
x
Divide both numerator and denominator by
x
2
I
=
∫
x
2
+
9
+
x
2
16
(
1
−
x
2
4
)
d
x
=
∫
(
x
+
x
4
)
2
+
1
(
1
−
x
2
4
)
d
x
Put
u
=
x
+
x
4
,
d
u
=
(
1
−
x
2
4
)
d
x
I
=
∫
u
2
+
1
d
u
=
tan
−
1
(
u
)
+
B
=
1
⋅
tan
−
1
(
x
+
x
4
)
+
B
⇒
f
(
x
)
=
x
+
x
4
f
(
10
)
=
10
+
10
4
=
10.4