Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ((x-1) d x/(x+1) √x3+x2+x)=f(x)+C, then f(1)=
Q. If
∫
(
x
+
1
)
x
3
+
x
2
+
x
(
x
−
1
)
d
x
=
f
(
x
)
+
C
, then
f
(
1
)
=
1618
194
TS EAMCET 2020
Report Error
A
4
π
B
5
2
π
C
3
2
π
D
6
5
π
Solution:
Let
I
=
∫
(
x
+
1
)
x
3
+
x
2
+
x
x
−
1
d
x
=
∫
(
x
+
1
)
(
x
+
1
)
x
3
+
x
2
+
x
(
x
−
1
)
(
x
+
1
)
d
x
=
∫
(
x
+
1
)
2
x
3
+
x
2
+
x
x
2
−
1
d
x
=
∫
(
x
2
+
2
x
+
1
)
x
3
+
x
2
+
x
x
2
−
1
d
x
=
∫
x
(
x
+
2
+
x
1
)
⋅
x
x
+
1
+
x
1
x
2
(
1
−
1/
x
2
)
d
x
=
∫
(
x
+
x
1
+
2
)
x
+
x
1
+
1
1
−
x
2
1
d
x
Put,
x
+
x
1
+
1
=
t
2
⇒
(
1
−
x
2
1
)
d
x
=
2
t
d
t
∴
I
=
∫
(
t
2
+
1
)
t
2
t
d
t
=
2
∫
t
2
+
1
d
t
=
2
tan
−
1
t
=
2
tan
−
1
(
x
+
x
1
+
1
)
+
C
∴
f
(
x
)
=
2
tan
−
1
(
x
+
x
1
+
1
)
∴
f
(
1
)
=
2
tan
−
1
3
=
2
×
3
π
=
3
2
π