Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (x+1/√2x-1 )dx = f(x) √2x-1 +C where C is a constant of integration, then f(x) is equal to :
Q. If
∫
2
x
−
1
x
+
1
d
x
=
f
(
x
)
2
x
−
1
+
C
where
C
is a constant of integration, then
f
(
x
)
is equal to :
2054
224
JEE Main
JEE Main 2019
Integrals
Report Error
A
3
1
(
x
+
4
)
41%
B
3
1
(
x
+
1
)
29%
C
3
2
(
x
+
2
)
24%
D
3
2
(
x
−
4
)
6%
Solution:
2
x
−
1
=
t
⇒
2
x
−
1
=
t
2
⇒
2
d
x
=
2
t
.
d
t
∫
2
x
−
1
x
+
1
d
x
=
∫
t
2
t
2
+
1
t
d
t
=
∫
2
t
2
+
3
d
t
=
2
1
(
3
t
3
+
3
t
)
=
6
t
(
t
2
+
9
)
+
c
=
2
x
−
1
(
6
2
x
−
1
+
9
)
+
c
=
2
x
−
1
(
3
x
−
4
)
+
c
⇒
f
(
x
)
=
3
x
+
4