Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫((√ tan x)17-√ tan x) d x=2( tan x)(3/2)((1/a)( tan x)6+(1/b)( tan x)4+(1/c)( tan x)2+(1/d))+M where a , b , c and d are real constants and M is the constant of integration then ( a + b + c + d ) equals
Q. If
∫
(
(
tan
x
)
17
−
tan
x
)
d
x
=
2
(
tan
x
)
2
3
(
a
1
(
tan
x
)
6
+
b
1
(
tan
x
)
4
+
c
1
(
tan
x
)
2
+
d
1
)
+
M
where
a
,
b
,
c
and
d
are real constants and
M
is the constant of integration then
(
a
+
b
+
c
+
d
)
equals
253
136
Integrals
Report Error
A
46
0%
B
36
37%
C
8
47%
D
6
16%
Solution:
∫
tan
x
(
tan
8
x
−
1
)
d
x
Put
tan
x
=
t
2
⇒
sec
2
x
d
x
=
2
t
d
t
⇒
d
x
=
(
1
+
t
4
2
t
)
d
t
∫
t
(
t
16
−
1
)
(
1
+
t
4
2
t
)
d
t
=
2
∫
t
2
(
t
8
+
1
)
(
t
4
−
1
)
d
t
=
2
∫
(
t
14
−
t
10
+
t
6
−
t
2
)
d
t
=
2
(
15
t
15
−
11
t
11
+
7
t
7
−
3
t
3
)
+
M
=
2
⋅
t
3
(
15
t
12
−
11
t
8
+
7
t
4
−
3
1
)
+
M
=
2
(
tan
x
)
2
3
(
15
1
(
tan
x
)
6
+
(
−
11
)
1
(
tan
x
)
4
+
7
1
(
tan
x
)
2
+
(
−
3
)
1
)
+
M
∴
Hence,
a
+
b
+
c
+
d
=
15
−
11
+
7
−
3
=
8