Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( tan x/1+ tan x+ tan 2 x) d x=x-(K/√A tan -1((K tan x+1)√A))+C (C is a constant of integration), then the ordered pair (K, A) is equal to :
Q. If
∫
1
+
t
a
n
x
+
t
a
n
2
x
t
a
n
x
d
x
=
x
−
A
t
a
n
−
1
(
A
K
t
a
n
x
+
1
)
K
+
C
(C is a constant of integration), then the ordered pair
(
K
,
A
)
is equal to :
1864
209
JEE Main
JEE Main 2018
Integrals
Report Error
A
(2, 1)
10%
B
(-2, 3)
34%
C
(2, 3)
44%
D
(-2, 1)
11%
Solution:
Given:
I
=
∫
1
+
t
a
n
x
+
t
a
n
2
x
t
a
n
d
x
=
∫
(
1
−
1
+
t
a
n
x
+
t
a
n
2
x
s
e
c
2
x
)
d
x
Let
tan
x
=
t
,
sec
2
x
d
x
=
d
t
So,
I
=
x
−
∫
1
+
t
+
t
2
d
t
=
x
−
∫
(
t
+
2
1
)
2
+
4
3
d
t
=
x
−
3
/2
1
tan
−
1
(
3
/2
t
+
2
1
)
+
C
=
x
−
3
2
tan
−
1
(
3
2
t
a
n
x
+
1
)
+
C
Therefore, values of
K
=
2
,
A
=
3