Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits sin x1 t2 f(t) d t=1- sin x, x ∈(0, (π/2)) then f((1/√2)) is equal to
Q. If
s
i
n
x
∫
1
t
2
f
(
t
)
d
t
=
1
−
sin
x
,
x
∈
(
0
,
2
π
)
then
f
(
2
1
)
is equal to
34
184
Integrals
Report Error
Answer:
2
Solution:
On differentiating both sides with respect to
x
, we get
0
−
sin
2
x
⋅
f
(
sin
x
)
cos
x
=
−
cos
x
⇒
f
(
sin
x
)
=
s
i
n
2
x
1
.
∴
f
(
2
1
)
=
(
2
)
2
=
2