Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits f(x) dx = ψ (x) , then ∫ limits x5 f (x3) dx is equal to
Q. If
∫
f
(
x
)
d
x
=
ψ
(
x
)
,
t
h
e
n
∫
x
5
f
(
x
3
)
d
x
is equal to
1595
200
JEE Main
JEE Main 2013
Integrals
Report Error
A
3
1
[
x
3
ψ
(
x
3
)
−
∫
x
2
ψ
(
x
3
)
d
x
]
+
c
40%
B
3
1
x
3
ψ
(
x
3
)
−
3
∫
x
3
ψ
(
x
3
)
d
x
+
c
0%
C
3
1
x
3
ψ
(
x
3
)
−
∫
x
2
ψ
(
x
3
)
d
x
+
c
60%
D
3
1
[
x
3
ψ
(
x
3
)
−
∫
x
3
ψ
(
x
3
)
d
x
]
+
c
0%
Solution:
Given,
∫
f
(
x
)
d
x
=
ψ
(
x
)
Let
I
=
∫
x
5
f
(
x
3
)
d
x
Put
x
3
=
t
⇒
x
2
d
x
=
3
d
t
.....
(i)
∴
I
=
3
1
∫
t
f
(
t
)
d
t
=
3
1
[
t
⋅
∫
f
(
t
)
d
t
−
∫
{
d
t
d
(
t
)
∫
f
(
t
)
d
t
}
d
t
]
[integration by parts]
=
3
1
[
t
ψ
(
t
)
−
∫
ψ
(
t
)
d
t
]
=
3
1
[
x
3
ψ
(
x
3
)
−
3
∫
x
2
ψ
(
x
3
)
d
x
]
+
c
[from Eq. (i)]
=
3
1
x
3
ψ
(
x
3
)
−
∫
x
2
ψ
(
x
3
)
d
x
+
c