Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits (dx/ cos3 x √2 sin 2x) = ( tan x)A + C ( tan x )B+ k , where k is a constant of integration, then A + B + C equals :
Q. If
∫
c
o
s
3
x
2
s
i
n
2
x
d
x
=
(
tan
x
)
A
+
C
(
tan
x
)
B
+
k
,
where
k
is a constant of integration, then
A
+
B
+
C
equals :
1426
206
JEE Main
JEE Main 2016
Integrals
Report Error
A
5
21
10%
B
5
16
68%
C
10
07
10%
D
10
27
12%
Solution:
∫
co
s
3
x
4
s
in
x
cos
x
d
x
=
∫
2
co
s
4
x
t
an
x
d
x
Let tan
x
=
t
2
⇒
se
c
2
x
=
1
+
t
4
se
c
2
x
d
z
=
2
t
d
t
∫
2
t
an
x
se
c
4
x
d
x
=
∫
2
t
an
x
se
c
2
x
(
se
c
2
x
d
x
)
=
∫
2
t
(
1
+
t
4
)
2
t
d
t
=
∫
(
1
+
t
4
)
d
t
=
t
+
5
t
5
+
k
=
t
an
x
+
5
1
t
a
n
5/2
x
+
k
[
t
=
t
an
x
]
A
=
2
1
,
B
=
2
5
,
C
=
5
1
A
+
B
+
C
=
5
16