diff. both sides xy(x)=2x−y′(x)
hence dxdy−xy=−2x(y′(x)=dxdy;y(x)=y) I.F=e∫−xdx=e2−x2 ye2−x2=∫−2xe2−x2dx;e−2x2=t⇒−xe−2x2dx=dt;I=∫2dt ye2−x2=2e2−x2+c y=2+ce2x2
if x=a⇒a2+y=0⇒y=−a2 (from the given equation) hence −a2=2+ce2a2;ce2a2=−(2+a2);c=−(2+a2)e−2a2;y=2−(2+a2)e2x2−a2