Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits0f(x) t2 d t=x cos π x, then f prime(9)
Q. If
0
∫
f
(
x
)
t
2
d
t
=
x
cos
π
x
, then
f
′
(
9
)
154
167
Integrals
Report Error
A
is equal to
−
9
1
B
is equal to
−
3
1
C
is equal to
3
1
D
is non existent
Solution:
On differentiating both sides
[
f
(
x
)
]
2
f
′
(
x
)
=
cos
π
x
−
π
x
sin
π
x
[
f
(
9
)
]
2
f
′
(
9
)
=
−
1
.....(i)
Also
[
3
t
3
]
0
f
(
x
)
=
x
cos
π
x
⇒
3
[
f
(
x
)
]
3
=
x
cos
π
x
[
f
(
9
)
]
3
=
−
27
⇒
f
(
9
)
=
−
3
.......(ii)
from (i) & (ii)
f
′
(
9
)
=
−
1/9