Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits050 π ( x | sin x |/ x + - x ) dx = k π( k ∈ N ), then the value of k is [Note: y denotes fractional part of y.]
Q. If
0
∫
50
π
{
x
}
+
{
−
x
}
x
∣
s
i
n
x
∣
d
x
=
kπ
(
k
∈
N
)
, then the value of
k
is
[Note:
{
y
}
denotes fractional part of
y
.]
140
75
Integrals
Report Error
A
1250
B
2500
C
5000
D
5050
Solution:
I
=
0
∫
50
π
{
x
}
+
{
−
x
}
x
∣
s
i
n
x
∣
d
x
=
0
∫
50
π
1
x
∣
s
i
n
x
∣
d
x
;
Using king & add, we get
2
I
=
50
π
0
∫
50
π
∣
sin
x
∣
d
x
I
=
25
π
×
50
∫
0
π
∣
sin
x
∣
d
x
=
2500
π
⇒
k
=
2500