Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ex( tan x-x-2 tan x sec 2 x) d x=ex f(x)+C where f(0)=0, then the value of f((π/4)) equals (where C is the constant of integration)
Q. If
∫
e
x
(
tan
x
−
x
−
2
tan
x
sec
2
x
)
d
x
=
e
x
f
(
x
)
+
C
where
f
(
0
)
=
0
, then the value of
f
(
4
π
)
equals (where
C
is the constant of integration)
640
115
Integrals
Report Error
A
4
π
12%
B
1
−
4
π
17%
C
4
−
π
66%
D
2
π
5%
Solution:
∫
e
x
(
tan
x
−
x
+
tan
2
x
−
tan
2
x
−
2
tan
x
sec
2
x
)
d
x
=
∫
e
x
(
tan
x
−
x
+
tan
2
x
)
d
x
−
∫
e
x
(
tan
2
x
+
2
tan
x
sec
2
x
)
d
x
=
e
x
(
tan
x
−
x
−
tan
2
x
)
+
C
f
(
x
)
=
tan
x
−
x
−
tan
2
x
f
(
4
π
)
=
4
−
π