Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ e sin x[(x cos3x - sin x/ cos2 x)] dx = e sin xf(x)+c , where c is constant of integration, then f(x) =
Q. If
∫
e
s
i
n
x
[
c
o
s
2
x
x
c
o
s
3
x
−
s
i
n
x
]
d
x
=
e
s
i
n
x
f
(
x
)
+
c
, where c is constant of integration, then
f
(
x
)
=
2392
186
WBJEE
WBJEE 2018
Report Error
A
sec
x
−
x
25%
B
x
−
sec
x
38%
C
tan
x
−
x
12%
D
x
−
tan
x
25%
Solution:
We have,
∫
e
s
i
n
x
(
c
o
s
2
x
x
c
o
s
3
x
−
s
i
n
x
)
d
x
=
e
s
i
n
x
f
(
x
)
+
c
⇒
∫
e
s
i
n
x
(
x
cos
x
−
sec
x
tan
x
)
d
x
=
e
s
i
n
x
f
(
x
)
+
c
⇒
∫
e
s
i
n
x
(
x
cos
x
−
1
+
1
−
sec
x
tan
x
)
d
x
=
∫
s
i
n
x
f
(
x
)
+
c
⇒
∫
[
e
s
i
n
x
cos
x
(
x
−
sec
x
)
+
e
s
i
n
x
(
1
−
sec
x
tan
x
)
]
d
x
=
e
s
i
n
x
f
(
x
)
+
c
⇒
∫
d
x
d
{
e
s
i
n
x
(
x
−
sec
x
)
}
d
x
=
e
s
i
n
x
f
(
x
)
+
c
⇒
e
s
i
n
x
(
x
−
sec
x
)
=
e
s
i
n
x
f
(
x
)
+
c
⇒
f
(
x
)
=
x
−
sec
x