Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( cos x - sin x +1- x / e x + sin x + x ) dx = ln (f( x ))+ g ( x )+ C where C is the constant of integration and f( x ) is positive, then f( x )+g( x ) has the value equal to
Q. If
∫
e
x
+
s
i
n
x
+
x
c
o
s
x
−
s
i
n
x
+
1
−
x
d
x
=
ln
(
f
(
x
))
+
g
(
x
)
+
C
where
C
is the constant of integration and
f
(
x
)
is positive, then
f
(
x
)
+
g
(
x
)
has the value equal to
861
121
Integrals
Report Error
A
e
x
+
sin
x
+
2
x
B
e
x
+
sin
x
C
e
x
−
sin
x
D
e
x
+
sin
x
+
x
Solution:
I
=
∫
e
x
+
s
i
n
x
+
x
(
e
x
+
c
o
s
x
+
1
)
−
(
e
x
+
s
i
n
x
+
x
)
d
x
=
ln
(
e
x
+
sin
x
+
x
)
−
x
+
C
∴
f
(
x
)
=
e
x
+
sin
x
+
x
and
g
(
x
)
=
−
x
f
(
x
)
+
g
(
x
)
=
e
x
+
sin
x