We have, ∫x3−6x−99x+15dx=Alog∣g(x)∣+Blog∣f(x)∣+C
Now, x3−6x−99x+15=(x−3)(x2+3x+3)9x+15 ∴(x−3)(x2+3x+3)9x+15=x−3A+x2+3x+3Bx+C ⇒9x+15=A(x2+3x+3)+(Bx+c)(x−3) ⇒9x+15=x2(A+B)+x(3A−3B+C)+(3A−3C)
On equating coefficients of x2,x and constant term, we get A+B=0,3A−3B+C=9 and 3A−3C=15
On solving above three equations
We get, A=2,B=−2 and C=−3 ∴∫(x−3)(x2+3x+3)9x+15dx =∫x−32dx+∫x2+3x+3−2x−3dx =∫x−32dx−∫x2+3x+32x+3dx =2log∣x−3∣−log∣∣x2+3x+3∣∣+C ∴A=2,B=−1,g(x)=x−3 and f(x)=x2+3x+3 ∴f(−1)(A−B)g(4)=(−1)2+3(−1)+3(2+1)(4−3)=3