Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ((8 x+(8/x)+9)/(2 x3+3 x2+4 x)2) d x=g(x)+C, then the value of 9(g(1)-g(-1)) is equal to
Q. If
∫
(
2
x
3
+
3
x
2
+
4
x
)
2
(
8
x
+
x
8
+
9
)
d
x
=
g
(
x
)
+
C
, then the value of
9
(
g
(
1
)
−
g
(
−
1
))
is equal to
596
119
Integrals
Report Error
A
0
B
1
C
2
D
3
Solution:
∫
(
2
x
4
+
3
x
3
+
4
x
2
)
2
(
8
x
+
x
8
+
9
)
x
2
d
x
=
∫
(
2
x
4
+
3
x
3
+
4
x
2
)
2
(
8
x
3
+
9
x
2
+
8
x
)
d
x
Put
2
x
4
+
3
x
3
+
4
x
2
=
t
⇒
d
t
=
(
8
x
3
+
9
x
2
+
8
x
)
d
x
∫
t
2
d
t
=
t
−
1
+
C
=
2
x
4
+
3
x
3
+
4
x
2
−
1
+
C
g
(
1
)
=
9
−
1
,
g
(
−
1
)
=
3
−
1
g
(
1
)
−
g
(
−
1
)
=
9
−
1
+
3
1
=
9
2
9
(
g
(
1
)
−
g
(
−
1
))
=
2