Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (2x + 5/√7 - 6x - x2) dx = A √7 - 6x - x2 + B sin-1 ( (x + 3/4) ) + C (where C is a constant of integration), then the ordered pair (A, B) is equal to :
Q. If
∫
7
−
6
x
−
x
2
2
x
+
5
d
x
=
A
7
−
6
x
−
x
2
+
B
sin
−
1
(
4
x
+
3
)
+
C
(where
C
is a constant of integration), then the ordered pair
(
A
,
B
)
is equal to :
3071
185
JEE Main
JEE Main 2018
Integrals
Report Error
A
(2, 1)
21%
B
(-2, -1)
48%
C
(-2, 1)
22%
D
(2, -1)
9%
Solution:
Given:
∫
7
−
6
x
−
x
2
2
x
+
5
d
x
=
∫
7
−
6
x
−
x
2
a
d
x
d
(
7
−
6
x
−
x
2
)
+
b
d
x
2
x
+
5
=
a
(
−
6
−
2
x
)
+
b
Now comparing
x
coefficient and constant coefficient, we get
5
=
−
6
a
+
b
and
−
2
a
=
2
⇒
a
=
−
1
5
=
6
+
b
⇒
b
=
−
1
−
∫
7
−
6
x
−
x
2
(
−
6
−
2
x
)
d
x
−
∫
16
−
(
x
+
3
)
2
d
x
=
−
2
7
−
6
x
−
x
2
−
sin
−
1
(
4
x
+
3
)
+
c
A
=
−
2
,
B
=
−
1