Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (1/ cos 3 x √2 sin 2 x) d x=( tan x)A+C( tan x)B+k, where k is a constant of integration, then A+B+C is equal to
Q. If
∫
c
o
s
3
x
2
s
i
n
2
x
1
d
x
=
(
tan
x
)
A
+
C
(
tan
x
)
B
+
k
, where
k
is a constant of integration, then
A
+
B
+
C
is equal to
656
143
Integrals
Report Error
A
10
7
B
5
16
C
10
27
D
5
21
Solution:
I
=
∫
2
t
a
n
x
s
e
c
4
x
d
x
put
tan
x
=
t
sec
2
x
d
x
=
d
t
⇒
I
=
2
1
∫
t
(
1
+
t
2
)
d
t
⇒
I
=
2
1
[
2
1
t
+
2
5
t
5/2
]
+
k
⇒
I
=
(
tan
x
)
1/2
+
5
1
(
tan
x
)
5/2
+
k
so
A
+
B
+
C
=
2
1
+
5
1
+
2
5
=
10
5
+
2
+
25
=
5
16