We have, 0∫π/33+4sinxcosxdx =klog(33+23)…(i)
Let I=0∫π/33+4sinxcosxdx
Put 3+4sinx=t ⇒0+4cosxdx=dt
Upper limit, x=3π,t=3+4sin3π =3+4×23=3+23
and lower limit x=0, t=3+4sin0=3 ∴I=3∫3+234tdt=41[logt]33+23 =41[log(3+23)−log3] ⇒I=41log(33+23)…(ii) ∴ From Eqs. (i) and (ii), we get k=41