We have, (1+px)n ∴Tr+1=nCr(1)n−r(px)r ⇒Tr+1=nCrprxr
Coefficient of xr=nCrpr
Now coefficient of x=nC1p=8 [put r = 1] ⇒np=8 ....(i)
Also, coefficient of x2=nC2p2=24 [put r = 2] ⇒2n(n−1)p2=24 ⇒2n(n−1)(n8)2=24 (from (i)) ⇒2n64(n−1)=24⇒4(n−1)=3n⇒n=4
From (i), we get p=2