Geometric mean of a and b=ab ⇒ab=16 (given) ⇒ab=256 ... (i)
And harmonic mean of a and b=a+b2ab ∴a+b2ab=564 (given) ⇒a+b2×256=564[ from Eq. (i) ] ⇒a+b=40 ... (ii)
Now, (a−b)=(a+b)2−4ab =(40)2−4×256 =1600−1024 =576 ⇒a−b=24 ...(ii)
On solving Eqs. (ii) and (iii), we get a=32 and b=8 a:b=32:8 =4:1