Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if g ( x ) = ∫x0 cos4 t dt , then g ( x + π ) equals
Q. if
g
(
x
)
=
∫
0
x
cos
4
t
d
t
, then
g
(
x
+
π
)
equals
2302
204
IIT JEE
IIT JEE 1997
Integrals
Report Error
A
g
(
x
)
+
g
(
π
)
44%
B
g
(
x
)
−
g
(
π
)
20%
C
g
(
x
)
g
(
π
)
20%
D
g
(
π
)
g
(
x
)
16%
Solution:
Given,
g
(
x
)
=
0
∫
x
cos
4
t
d
t
⇒
g
(
x
+
π
)
=
0
∫
π
+
x
cos
4
t
d
t
=
0
∫
π
cos
4
t
d
t
+
π
∫
π
+
x
cos
4
t
d
t
=
I
1
+
I
2
where,
I
1
=
0
∫
π
cos
4
t
d
t
=
g
(
π
)
and
I
2
=
π
∫
π
+
x
cos
4
t
d
t
Put
t
=
π
+
y
⇒
t
=
d
y
I
2
=
0
∫
x
cos
4
(
y
+
π
)
d
y
=
0
∫
x
(
−
cos
y
)
4
d
y
=
0
∫
x
cos
4
y
d
y
=
g
(
x
)
∴
g
(
x
+
π
)
=
g
(
π
)
+
g
(
x
)