Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If g(x)=∫ limits sin x sin (2 x) sin -1(t) d t, then
Q. If
g
(
x
)
=
s
i
n
x
∫
s
i
n
(
2
x
)
sin
−
1
(
t
)
d
t
, then
2482
186
JEE Advanced
JEE Advanced 2017
Report Error
A
g
′
(
2
π
)
=
−
2
π
B
g
′
(
−
2
π
)
=
2
π
C
g
′
(
2
π
)
=
2
π
D
g
′
(
−
2
π
)
=
−
2
π
Solution:
Given,
g
(
x
)
=
s
i
n
x
∫
s
i
n
(
2
x
)
sin
−
1
(
t
)
d
t
Applying Newton Leibniz Formula,
g
′
(
x
)
=
sin
−
1
[
sin
(
2
x
)]
×
2
cos
2
x
−
sin
−
1
(
sin
x
)
×
cos
x
⇒
g
′
(
x
)
=
4
x
cos
2
x
−
x
cos
x
So,
g
′
(
2
π
)
=
−
2
π
−
0
=
−
2
π
And
g
′
(
−
2
π
)
=
2
π
−
0
=
2
π