Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If for p ≠ q ≠ 0, then function f(x)=(√[7]p(729+x)-3/√[3]729+q x-9) is continuous at x=0 then:
Q. If for
p
=
q
=
0
, then function
f
(
x
)
=
3
729
+
q
x
−
9
7
p
(
729
+
x
)
−
3
is continuous at
x
=
0
then:
3614
1
JEE Main
JEE Main 2022
Continuity and Differentiability
Report Error
A
7
pq
f
(
0
)
−
1
=
0
B
63
q
f
(
0
)
−
p
2
=
0
C
21
q
f
(
0
)
−
p
2
=
0
D
7
pq
f
(
0
)
−
9
=
0
Solution:
f
(
0
)
=
x
→
0
lim
f
(
x
)
Limit should be
0
0
form
So,
7
p
.729
−
3
=
0
⇒
p.
3
6
=
3
7
⇒
p
=
3
Now,
f
(
0
)
=
x
→
0
lim
3
3
6
+
q
x
−
9
7
3
(
3
6
+
x
)
−
3
=
x
→
0
lim
9
[
(
1
+
3
6
q
x
)
1/3
−
1
]
3
[
(
1
+
3
6
x
)
1/7
−
1
]
=
9
3
×
3.
3
6
q
7.
3
6
1
⇒
f
(
0
)
=
3
1
×
7
q
3
=
7
q
1
⇒
7
q
f
(
0
)
−
1
=
0
⇒
7
⋅
p
2
⋅
q
f
(
0
)
−
p
2
=
0
(for option)
⇒
63
q
f
(
0
)
−
p
2
=
0